Książki

Matematyka w uczeniu maszynowym

Matematyka w uczeniu maszynowym

autor: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong

format: 200x228

data wydania: 2022-09-20

83.85 zł
kup teraz

Uczenie maszynowe staje się wszechobecne. Dzięki coraz lepszym narzędziom służącym do tworzenia aplikacji szczegóły techniczne związane z obliczeniami i modelami matematycznymi są często pomijane przez projektantów. Owszem, to wygodne podejście, ale wiąże się z ryzykiem braku świadomości co do wszystkich konsekwencji wybranych rozwiązań projektowych, szczególnie ich mocnych i słabych stron. A zatem bez ugruntowanych podstaw matematyki nie można mówić o profesjonalnym podejściu do uczenia maszynowego.

Ten podręcznik jest przeznaczony dla osób, które chcą dobrze zrozumieć matematyczne podstawy uczenia maszynowego i nabrać praktycznego doświadczenia w używaniu pojęć matematycznych. Wyjaśniono tutaj stosowanie szeregu technik matematycznych, takich jak algebra liniowa, geometria analityczna, rozkłady macierzy, rachunek wektorowy, optymalizacja, probabilistyka i statystyka. Następnie zaprezentowano matematyczne aspekty czterech podstawowych metod uczenia maszynowego: regresji liniowej, analizy głównych składowych, modeli mieszanin rozkładów Gaussa i maszyn wektorów nośnych. W każdym rozdziale znalazły się przykłady i ćwiczenia ułatwiające przyswojenie materiału.

W książce między innymi:

  • podstawy algebry: układy równań, macierze, przestrzenie afiniczne
  • rachunek prawdopodobieństwa, sprzężenia, optymalizacja
  • wnioskowanie z wykorzystaniem różnego rodzaju modeli
  • regresja liniowa i redukcja wymiarowości
  • maszyna wektorów nośnych i rozwiązania numeryczne

Matematyka: koniecznie, jeśli chcesz zrozumieć istotę sztucznej inteligencji!

83.85 zł
kup teraz